

Exercice 1. Let $x \in X$ and let $\{x_k\}_{k \in \mathbb{N}} \subset X$ be a sequence such that $x_k \xrightarrow{k \rightarrow \infty} x$. As in Theorem 2.1.1 of the lecture notes, we can assume without loss of generality that $F_K(x) < \infty$ (lest the proof be complete). In particular, we can also assume that $x_k \in K$ for all $k \in \mathbb{N}$, and the weak sequential convergence shows that $x \in K$. Therefore, the lower semi-continuity of F applies and we deduce that

$$F_K(x) = F(x) \leq \liminf_{k \rightarrow \infty} F_K(x_k) = \liminf_{k \rightarrow \infty} F_K(x_k).$$

Finally, for all $t \in \mathbb{R}$, $X \cap \{x : F_K(x) \leq t\} = K \cap \{x : F(x) \leq t\}$ which is sequentially compact as the intersection of a sequentially compact and a sequentially closed set.

Exercice 2 (Lemma of Du Bois-Reymond). We show that for all $\varphi \in C_c^\infty(\mathbb{R})$, there exists $\psi \in C_c^\infty(\mathbb{R})$ such that $\psi' = \varphi$ if and only if $\varphi \in H$. Indeed, if $\varphi = \psi'$, using the fundamental theorem of calculus, we have

$$\int_{\mathbb{R}} \varphi(t) dt = \int_{\mathbb{R}} \psi'(t) dt = \lim_{R \rightarrow \infty} (\varphi(t) - \varphi(-t)) = 0$$

as ψ has compact support. It implies in particular that there exists $R > 0$ large enough such that for all $r \geq R$, we have

$$\int_{-r}^r \varphi(t) dt = \int_{-R}^R \varphi(t) dt = 0.$$

Therefore, we deduce that $\varphi \in H$.

Conversely, if $\varphi \in H$, define

$$\psi(t) = \int_{-\infty}^t \varphi(s) ds.$$

Then, $\psi \in C^\infty(\mathbb{R})$, and we claim that ψ has compact support. Indeed, as φ has compact support, there exists $R > 0$ such that $\varphi(t) = 0$ for all $|t| \geq R$. In particular, for all $t \leq -R$, we have $\psi(t) = 0$ (as we integrate an identically zero function), and for all $t \geq R$, we have

$$\psi(t) = \int_{-\infty}^t \varphi(s) ds = \int_{-\infty}^R \varphi(s) ds = \int_{\mathbb{R}} \varphi(s) ds = 0,$$

where we used that $\varphi \in H$. Therefore, the equivalence is established.

Now, if $f \in L^1_{\text{loc}}(\Omega)$ satisfies the hypothesis of the exercise, it shows in particular that

$$\int_{\mathbb{R}} f(x) \varphi(x) dx = 0 \quad \text{for all } \varphi \in H. \tag{1}$$

To complete the proof, we notice that there was a hint in the name H was given—for H is a hyperplane. In other words (1) holds for all functions belonging to a codimension 1 subspace of $C_c^\infty(\mathbb{R})$. To complete the proof, if $\theta \in C_c^\infty(\mathbb{R})$ is any function such that

$$\int_{\mathbb{R}} \theta = 1,$$

notice that for all $\varphi \in \mathcal{D}(\mathbb{R})$, we have

$$\varphi - \left(\int_{\mathbb{R}} \varphi \right) \theta \in H \subset \mathcal{D}(\mathbb{R}).$$

Therefore, we obtain

$$\begin{aligned} 0 &= \int_{\mathbb{R}} f(x) \left(\varphi(x) - \left(\int_{\mathbb{R}} \varphi(t) dt \right) \theta(x) \right) dx = \int_{\mathbb{R}} f(x) \varphi(x) dx - \left(\int_{\mathbb{R}} \varphi(t) dt \right) \int_{\mathbb{R}} f(x) \theta(x) dx \\ &= \int_{\mathbb{R}} \left(f(x) - \int_{\mathbb{R}} f(t) \theta(t) dt \right) \varphi(x) dx. \end{aligned}$$

Therefore, using Lemma 2.2.1 from the lecture notes, we deduce that f is equal to the constant

$$C = \int_{\mathbb{R}} f(t) \theta(t) dt \in \mathbb{R}.$$

Exercice 3 (Approximation of Lipschitz functions). Consider

$$I_n^1 = \left[-1 + \frac{1}{n}, -1 + \frac{2}{n} \right] \quad I_n^2 = \left[-\frac{1}{n} + \frac{1}{n}, \frac{1}{n} \right] \quad I_n^3 = \left[1 - \frac{2}{n}, 1 - \frac{1}{n} \right].$$

On each interval, we construct polynomial functions such that

$$\begin{aligned} P_n^1 \left(-1 - \frac{1}{n} \right) &= (P_n^1)' \left(-1 + \frac{1}{n} \right) = 0, & P_n^1 \left(-1 + \frac{2}{n} \right) &= u \left(-1 + \frac{2}{n} \right), & (P_n^1)' \left(-1 + \frac{2}{n} \right) &= -1 \\ P_n^2 \left(\pm \frac{1}{n} \right) &= u \left(\pm \frac{1}{n} \right) & (P_n^2)' \left(\pm \frac{1}{n} \right) &= \pm 1 \\ P_n^3 \left(1 - \frac{1}{n} \right) &= (P_n^3)' \left(1 - \frac{1}{n} \right) = 0, & P_n^3 \left(1 - \frac{2}{n} \right) &= u \left(1 - \frac{2}{n} \right), & (P_n^3)' \left(1 - \frac{2}{n} \right) &= 1. \end{aligned}$$

Then, we define

$$u_n(t) = \begin{cases} 0 & \text{for all } |t| > 1 - \frac{1}{n} \\ P_n^i(t) & \text{for all } t \in I_n^i \ i = 1, 2, 3 \\ u(t) & \text{otherwise} \end{cases}$$

Since we want to interpolate those polynomial functions as at most three non-symmetric values, we can choose polynomial of degree at most 3. A computation shows that

$$\begin{cases} P_n^1(t) = \left(t + 1 - \frac{1}{n} \right)^2 (3n^2(t+1) - 8n) \\ P_n^2(t) = \frac{n}{2} \left(t^2 - \frac{1}{n^2} \right) - 1 + \frac{1}{n} \\ P_n^3(t) = \left(t - 1 + \frac{1}{n} \right)^2 (-3n^2(t-1) - 8n) \end{cases}$$

furnishes the appropriate solution. The verification of the various properties is elementary and we omit it (the main step is to show that $(P_n^i)'$ is bounded, and this is easy to establish).

Exercice 4 (Euler-Lagrange equation). 1. The Euler-Lagrange equation is given by

$$\frac{d}{dt} (2u'(t) - 4(u'(t))^3) = 0,$$

which implies that $u'(t) - 2(u'(t))^3$ is constant. However, the polynomial $X - 2X^3 + C$ ($C \in \mathbb{R}$) admits at most three real roots, which implies that u' must be constant. Therefore, u is an affine function, but then, the boundary conditions imply that $u = 0$.

However, it is not a minimiser since $\{u_k : t \mapsto k(1 - t^2)\}_{k \in \mathbb{N}}$ satisfies the boundary conditions and we easily check that

$$L(u_k) \xrightarrow[k \rightarrow \infty]{} -\infty,$$

which shows that L does not admit a minimiser.

2. The Euler-Lagrange equation is given by

$$\frac{d}{dt} (2u^2(t)(2t - u'(t))) = 2u(t)(2t - u'(t))^2.$$

A particular solution is given by

$$u(t) = \begin{cases} t^2 & \text{for all } t > 0 \\ 0 & \text{for all } t \leq 0. \end{cases}$$

Let us check that u is a minimiser. Indeed, $F \geq 0$, which shows that $L \geq 0$, and since $L(u) = 0$, we deduce that u is a minimiser. By continuity, any C^1 minimiser must satisfy either $v(t) = 0$ or $v'(t) = 2t$ at every given $t \in [-1, 1]$. The boundary conditions and the C^1 regularity of v imply that v takes the form

$$v(t) = \begin{cases} t^2 - t_0^2 & \text{for all } t > t_0 \\ 0 & \text{for all } t \leq t_0. \end{cases}$$

The boundary condition $v(1) = 1$ shows that $t_0 = 0$, and this implies that $v = u$.