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Exercice 1. Let x ∈ X and let {xk}k∈N ⊂ X be a sequence such that xk −→
k→∞

x. As in Theorem 2.1.1 of
the lecture notes, we can assume without loss of generality that FK(x) < ∞ (lest the proof be complete).
In particular, we can also assume that xk ∈ K for all k ∈ N, and the weak sequential convergence shows
that x ∈ K. Therefore, the lower semi-continuity of F applies and we deduce that

FK(x) = F (x) ≤ lim inf
k→∞

FK(xk) = lim inf
k→∞

FK(xk).

Finally, for all t ∈ R, X ∩ {x : FK(x) ≤ t} = K ∩ {x : F (x) ≤ t} which is sequentially compact as the
intersection of a sequentially compact and a sequentially closed set.

Exercice 2 (Lemma of Du Bois-Reymond). We show that for all φ ∈ C∞
c (R), there exists ψ ∈ C∞

c (R)
such that ψ′ = φ if and only if φ ∈ H. Indeed, if φ = ψ′, using the fundamental theorem of calculus, we
have ∫

R
φ(t)dt =

∫
R
ψ′(t)dt = lim

R→∞
(φ(t) − φ(−t)) = 0

as ψ has compact support. It implies in particular that there exists R > 0 large enough such that for all
r ≥ R, we have ∫ r

−r

φ(t)dt =
∫ R

−R

φ(t)dt = 0.

Therefore, we deduce that φ ∈ H.
Conversely, if φ ∈ H, define

ψ(t) =
∫ t

−∞
φ(s)ds.

Then, ψ ∈ C∞(R), and we claim that ψ has compact support. Indeed, as φ has compact support, there
exists R > 0 such that φ(t) = 0 for all |t| ≥ R. In particular, for all t ≤ −R, we have ψ(t) = 0 (as we
integrate an identically zero function), and for all t ≥ R, we have

ψ(t) =
∫ t

−∞
φ(s)ds =

∫ R

−∞
φ(s)ds =

∫
R
φ(s)ds = 0,

where we used that φ ∈ H. Therefore, the equivalence is established.
Now, if f ∈ L1

loc(Ω) satisfies the hypothesis of the exercise, it shows in particular that∫
R
f(x)φ(x)dx = 0 for all φ ∈ H. (1)

To complete the proof, we notice that there was a hint in the name H was given—for H is a hyperplane.
In other words (1) holds for all functions belonging to a codimension 1 subspace of C∞

c (R). To complete
the proof, if θ ∈ C∞

c (R) is any function such that∫
R
θ = 1,

notice that for all φ ∈ D(R), we have

φ−
(∫

R
φ

)
θ ∈ H ⊂ D(R).
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Therefore, we obtain

0 =
∫
R
f(x)

(
φ(x) −

(∫
R
φ(t)dt

)
θ(x)

)
dx =

∫
R
f(x)φ(x)dx−

(∫
R
φ(t)dt

)∫
R
f(x)θ(x)dx

=
∫
R

(
f(x) −

∫
R
f(t)θ(t)dt

)
φ(x)dx.

Therefore, using Lemma 2.2.1 from the lecture notes, we deduce that f is equal to the constant

C =
∫
R
f(t)θ(t) ∈ R.

Exercice 3 (Approximation of Lipschitz functions). Consider

I1
n =

[
−1 + 1

n
,−1 + 2

n

]
I2

n =
[
− 1
n

+ 1
n

]
I3

n =
[
1 − 2

n
, 1 − 1

n

]
.

On each interval, we construct polynomial functions such that

P 1
n

(
−1 1

n

)
= (P 1

n)′
(

−1 + 1
n

)
= 0, P 1

n

(
−1 + 2

n

)
= u

(
−1 + 2

n

)
, (P 1

n)′
(

−1 + 2
n

)
= −1

P 2
n

(
± 1
n

)
= u

(
± 1
n

)
(P 2

n)′
(

± 1
n

)
= ±1

P 3
n

(
1 − 1

n

)
= (P 3

n)′
(

1 − 1
n

)
= 0, P 3

n

(
1 − 2

n

)
= u

(
1 − 2

n

)
, (P 3

n)′
(

1 − 2
n

)
= 1.

Then, we define

un(t) =


0 for all |t| > 1 − 1

n

P i
n(t) for all t ∈ Ii

n i = 1, 2, 3
u(t) otherwise

Since we want to interpolate those polynomial functions as at most three non-symmetric values, we can
choose polynomial of degree at most 3. A computation shows that

P 1
n(t) =

(
t+ 1 − 1

n

)2 (
3n2(t+ 1) − 8n

)
P 2

n(t) = n

2

(
t2 − 1

n2

)
− 1 + 1

n

P 3
n(t) =

(
t− 1 + 1

n

)2 (
−3n2(t− 1) − 8n

)
furnishes the appropriate solution. The verification of the various properties is elementary and we omit
it (the main step is to show that (P i

n)′ is bounded, and this is easy to establish).
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Exercice 4 (Euler-Lagrange equation). 1. The Euler-Lagrange equation is given by

d

dt

(
2u′(t) − 4(u′(t))3) = 0,

which implies that u′(t) − 2(u′(t))3 is constant. However, the polynomial X − 2X3 + C (C ∈ R)
admits at most three real roots, which implies that u′ must be constant. Therefore, u is an affine
function, but then, the boundary conditions imply that u = 0.

However, it is not a minimiser since
{
uk : t 7→ k(1 − t2)

}
k∈N satisfies the boundary conditions

and we easily check that

L(uk) −→
k→∞

−∞,

which shows that L does not admit a minimiser.
2. The Euler-Lagrange equation is given by

d

dt

(
2u2(t) (2t− u′(t))

)
= 2u(t) (2t− u′(t))2

.

A particular solution is given by

u(t) =
{
t2 for all t > 0
0 for all t ≤ 0.

Let us check that u is a minimiser. Indeed, F ≥ 0, which shows that L ≥ 0, and since L(u) = 0,
we deduce that u is a minimiser. By continuity, any C1 minimiser must satisfy either v(t) = 0 or
v′(t) = 2t at every given t ∈ [−1, 1]. The boundary conditions and the C1 regularity of v imply
that v takes the form

v(t) =
{
t2 − t20 for all t > t0

0 for all t ≤ t0.

The boundary condition v(1) = 1 shows that t0 = 0, and this implies that v = u.
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