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Exercice 1. Let z € X and let {x1}, .y C X be a sequence such that xy, w2 As in Theorem 2.1.1 of
—00

the lecture notes, we can assume without loss of generality that Fi (z) < oo (lest the proof be complete).
In particular, we can also assume that x; € K for all £ € N, and the weak sequential convergence shows
that x € K. Therefore, the lower semi-continuity of F' applies and we deduce that

Fg(x) =F(z) < likrgg;fFK(xk) = 1iklgioréfFK(xk).

Finally, for all t € R, X N{x: Fr(x) <t} = KN {z: F(z) <t} which is sequentially compact as the
intersection of a sequentially compact and a sequentially closed set.

Exercice 2 (Lemma of Du Bois-Reymond). We show that for all ¢ € C°(R), there exists ¢ € C°(R)
such that ¢’ = ¢ if and only if ¢ € H. Indeed, if ¢ = ¢/, using the fundamental theorem of calculus, we
have

Awwm=4wwﬁ=lm<ﬂw—w4»:o

R—o0

as 1 has compact support. It implies in particular that there exists R > 0 large enough such that for all

r > R, we have
r R
/ o(t)dt = / o(t)dt = 0.
—r —-R

Therefore, we deduce that ¢ € H.
Conversely, if ¢ € H, define

Then, v € C*°(R), and we claim that 1) has compact support. Indeed, as ¢ has compact support, there
exists R > 0 such that ¢(t) = 0 for all |¢| > R. In particular, for all ¢ < —R, we have ¢(t) = 0 (as we
integrate an identically zero function), and for all ¢t > R, we have

t R
vy = [ etos= [ elois= [ ps)s =0,
—o00 —o0 R
where we used that ¢ € H. Therefore, the equivalence is established.

Now, if f € LL () satisfies the hypothesis of the exercise, it shows in particular that

loc

/Rf(:c)cp(x)dx =0 for all p € H. (1)

To complete the proof, we notice that there was a hint in the name H was given—for H is a hyperplane.
In other words (1) holds for all functions belonging to a codimension 1 subspace of C°(R). To complete
the proof, if # € C2°(R) is any function such that

[o=1
R
notice that for all ¢ € 2(R), we have

cp—(/Rgo)HeHC@(]R).
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Therefore, we obtain

0= [ 160) (wte) - ([ wttran) o)) o = [ staretoran = ( [ wtoar) [ roparas
= [ (s~ [ ropcoar) ptaa.

Therefore, using Lemma 2.2.1 from the lecture notes, we deduce that f is equal to the constant

C= /R FO0() € R.

Exercice 3 (Approximation of Lipschitz functions). Consider
1 2 1 1 2 1
1}12{—1+,—1+] Iﬁ:[—+} 13:[1—,1—}
n n non n
On each interval, we construct polynomial functions such that
1 1 2 2 2
P! <1) = (PLY (1+) =0, P! (1+> u(1+>, (PLY (1+> =-1
n n n n n
1 1 1
P2 (i) =u (i) (P2 (j:) =41
n n n
1 1 2 2 2
Pg<1—>=(Pf;)'<1—)=0, Pg<1—)=u(1—), (P;”;)’<1—>=1.
n n n n n
Then, we define

1
0 for all |¢t| >1— —
n
un®) =\ pi(t) forall tell i=1,23

u(t) otherwise

Since we want to interpolate those polynomial functions as at most three non-symmetric values, we can
choose polynomial of degree at most 3. A computation shows that

P (t) = (t -1+ ;)2 (=3n*(t — 1) — 8n)

furnishes the appropriate solution. The verification of the various properties is elementary and we omit
it (the main step is to show that (P?)" is bounded, and this is easy to establish).
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Exercice 4 (Euler-Lagrange equation). 1. The Euler-Lagrange equation is given by

0 i) at i)
(1) — 4 (1)) = 0,

which implies that u'(t) — 2(u/(¢))? is constant. However, the polynomial X — 2X?3 + C (C € R)
admits at most three real roots, which implies that «' must be constant. Therefore, u is an affine
function, but then, the boundary conditions imply that u = 0.

However, it is not a minimiser since {uy : t — k(1 — %)}, _; satisfies the boundary conditions
and we easily check that

Llux) A

which shows that L does not admit a minimiser.
2. The Euler-Lagrange equation is given by

% (2u(t) (2t — /' ())) = 2u(t) (2t —u'(1))°.

A particular solution is given by

t2 for all £t >0
u(t) =
0 for all ¢ <0.

Let us check that u is a minimiser. Indeed, F' > 0, which shows that L > 0, and since L(u) = 0,
we deduce that u is a minimiser. By continuity, any C'* minimiser must satisfy either v(t) = 0 or
v'(t) = 2t at every given t € [—1,1]. The boundary conditions and the C* regularity of v imply
that v takes the form

o(t) =

t2—t2  forall t >ty
0 for all ¢t < tg.

The boundary condition v(1) = 1 shows that ¢y = 0, and this implies that v = u.



